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Through an appropriate change in variables, we find that the three-dimensional acoustic wave equation is
subject to the transformation media interpretation. In particular, we determine that this interpretation can be
extended beyond the pressure difference to also account for the momentum transported by the wave. The
suitability of momentum transport is especially interesting as it is an example where the field of interest is not
governed by a wave equation. We examine how both fields behave in the case of cloaking. Explicit consider-
ation of the boundary conditions shows that perfect cloaking is preserved, even when the incoming momentum
is nonzero at the surface of the cloak.
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The concept of “transformation media” �1,2� offers an ap-
proach to the control of physical phenomena. It has already
proven its usefulness with the control of electromagnetic
waves �3,4�, in particular the creation of a cloak of invisibil-
ity �1,3,5�—an application which has been experimentally
verified on numerous occasions �5–10�. Similar methods
have been developed for the manipulation of electromagnetic
potentials through control of conductivity �11,12� as well as
matter waves of specified energy through control of effective
mass and potential �13�. The development of transformation
media theory for sound waves bears an especially dramatic
history. Milton et al. �14� examined the most general form of
the equations, but did not succeed in determining the proper
transformations for the generic case. Cummer and Schurig
�15� specialized to the experimentally important case of lin-
earized waves in inviscid flow. This approach gave a pair of
coupled, linear partial differential equations, such as are typi-
cally found in the derivation of wave equations. They then
specialized further and restricted attention to two-
dimensional flows, which allowed for an analogy with Max-
well’s equations. Chen and Chan �16� started with the wave
equation for pressure alone and used an analogy with the
electromagnetic potential to determine the three-dimensional
�3D� approach. A similar approach, adopted independently
by Cummer et al. �17�, was published shortly after Chen and
Chan’s work and also demonstrates 3D cloaking.

The work of Chen and Chan, then, would seem to have
settled the development of transformation media theory for
acoustic waves—especially in light of the experimental con-
firmation of cloaking in metafluids �18,19�. However, their
approach to acoustic waves neglected to account for the sec-
ond dynamical variable in fluid mechanics—they demon-
strated the possibility of cloaking for pressure but not for
velocity. Since there is no reason, a priori, to prefer the
transformation of the pressure wave to that of the velocity
wave, it is worthwhile to see if the velocity wave also trans-
forms properly. Cummer et al. did consider the velocity as
well as the pressure, but they only demonstrated the proper
transformation of pressure. They relied upon the coupling of
the set of partial differential equations to determine the ve-
locity from the properly transformed pressure. After that,
they demonstrated that handling the velocity in this manner
will satisfy the requirements for cloaking. However, the cou-

pling of the set of partial differential equations does not es-
tablish the proper transformation of the velocity, as a consid-
eration of Maxwell’s equations will indicate. Faraday’s Law
states that

�� � E� = −
�

�t
B� �1�

implying that the two fields are coupled. But while the E�
field is subject to the transformation media interpretation, it
is the H� field and not the B� field that also transforms prop-
erly.

As a start to the derivation, we consider the coupled par-
tial differential equations used by Cummer and Schurig �15�,

�
�

�t
v� = − �� p , �2�

�

�t
p = − ��� · v� . �3�

Applying the �
�t operator to the second equation and using

the commutativity of mixed partials will recover the wave
equation considered by Chen and Chan �16�. Instead, we
specialize to stationary � and � and apply �

�t to the first
equation. This gives

�ij�t
2v j = �i��� jv

j� �4�

where we have used Einstein’s summation convention in
Cartesian coordinates. Notice that this equation is not the
wave equation �even for constant � and ��, since the operator
on the right-hand side is not the Laplacian �20�. To determine
the proper structure of the transformation medium for veloc-
ity, it is necessary to rewrite the above equation in general
coordinates �with isotropic material parameters�,

��t
2vi = �i� �

�g
� j��ggjkvk�� . �5�

Comparing Eqs. �4� and �5� gives the following rules for the
transformation medium:
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�̄ =
�

�g
, �6�

v̄i = �ggijv j , �7�

�̄ij =
�

�g
gij . �8�

Clearly, then, the velocity wave does not follow the trans-
formation media interpretation. However, this does not con-
tradict the positive result of pressure waves experiencing ef-
fective media. The dilemma is very quickly resolved by
considering a proper choice of variables. In this solution, the
result is very similar to that of electromagnetic fields in mat-
ter, although explicit analogies between the acoustic and
electromagnetic fields are not required. Considering the
equation �t��v��=−�� p and the fact that the gradient operator
is independent of choice of coordinates, it is clear that the
proper choice of variables is �v� and p, not v� and p. For
notational convenience, we denote

P� � �v� . �9�

The variable P� has two possible interpretations. It can be
seen as the momentum density of the wave, which is the
most obvious approach. However, it has dimensions
kg·m−2 · s−1, implying that it can also be interpreted as the
mass flux per unit area. Since it is more succinct, we shall
refer to P� as the momentum for the remainder of the paper.

The resultant set of differential equations is

�

�t
P� = − �� p , �10�

�

�t
p = − ��� · ��−1P� � . �11�

Once again, applying the derivative operator �
�t to the second

equation will reproduce the pressure wave equation, the pres-
sure cannot change in this change of variables. On the other
hand, the equation of motion for the second dynamical vari-
able is

�2

�t2 P� = �� ���� · ��−1P� �� . �12�

In general coordinates with isotropic material parameters,
Eq. �12� becomes

�t
2Pi = �i� �

�g
� j��ggjk�−1Pk�� . �13�

And finally, in Cartesian coordinates and anisotropic density,
Eq. �12� is

�t
2P̄i = �i��̄� j�� jk

−1P̄k�� . �14�

The transformation for the variables is therefore

�̄ =
�

�g
, �15�

�ij
−1 = �ggij�−1, �16�

�̄ij =
�

�g
gij , �17�

P̄i = Pi, �18�

which is exactly what is required to support the transforma-
tion medium interpretation, as desired. What is more, the
transformations for � and � are same for both p and P�
�15–17�. This implies that both dynamical variables can be
appropriately transformed by the same change of material
parameters, as we would desire for the proper functioning of
a device. �This congruence is not necessarily a corollary of
each field separately transforming properly or of the fields
being coupled; it is not beyond the realm of possibility for
there to be overspecified material transformations.�

It is interesting to note that this is an example of a trans-
formation media field that is not subject to the wave equa-
tion. However, the equation for P� is more complicated and
less familiar than p’s wave equation, so it is a significant
mathematical simplification to treat p in isolation. It is then
sufficient to rely upon the proper transformation of P� and its
coupling to p through the original set of partial differential
equations �Eqs. �10� and �11�� to determine all the dynamical
variables. This trade off is rather similar to the preference for
the potential V in electrostatics to the field E� —it is consid-
erably easier to work with the scalar field. In addition, pres-
sure and momentum are on equal footing in acoustics. So
unless there is a specific reason to turn to the momentum
equation, it is unlikely to be worth consideration.

The other side of this nicety in the different behaviors of
P� and v� is to wonder if there are practical differences in the
behavior of the two fields. In particular, is it possible to
determine the presence of a cloak by studying the velocity of
the wave? In an arbitrary location, the answer is clearly: no.
Partial differential Eqs. �2� and �3� serve to couple the veloc-
ity to the pressure everywhere. So as long as everything re-
mains analytic �and it is possible to take derivatives�, then
the velocity behaves properly. It is worth particular attention,
however, when the other variables become singular. When
expressions such as v� =�−1P� or �� ·v� =−�−1�tp involve inde-
terminate forms, then things are far less simple. Nor is the
question purely academic, as this is exactly what occurs at
the inner lining of the cloak—presenting the possibility that
objects inside of a cloak could still partially hear the outside
noise �or, by analogy with electromagnetism, still partially
see out by measuring the B� field�.

To investigate this possibility, we adopt the design pre-
sented in Chen and Chan �16� and Cummer et al. �17�, fol-
lowing Pendry et al. �1�, and Greenleaf et al. �11,12�: we
apply a linear transformation to the radial distance r�=a
+ �b−a�r /b, where a is the inner lining of the cloak and b is
the outer lining. The angular density becomes

���� =
b − a

b
�0, �19�
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���� = ���� �20�

and so is everywhere finite. The radial density, however, is

�rr� =
b − a

a

r�2

�r� − a�2�0 �21�

and the bulk modulus is

� =
�b − a�3

b3

r�2

�r� − a�2�0. �22�

Both of these parameters are therefore singular at r�=a �i.e.,
at r=0�. The pressure inside the cloak as a response to an
arbitrary input is �16�

p = 	
lm

plm · jl��cs0r� · Yl
m��,�� �23�

where Yl
m is the spherical harmonic, jl the spherical Bessel

function, r=b�r�−a� / �b−a�, and cs0 is the speed of sound in
the isotropic background medium ��0 /�0. The summation
runs through all integer l�0 and all integer m in the range −l
to l. For notational convenience, we define �cs0b�r�−a� /
�b−a��kR with R=r�−a. We now determine P� ,

Pr = −
k

i�
	
lm

plm
�ljl−1�kR� − �l + 1�jl+1�kR��

2l + 1
Yl

m��,�� ,

�24�

P� = −
1

i�r� sin �
	
lm

plmjl�kR��l cos �Yl
m��,��

− �l + m�Yl−1
m ��,��� , �25�

P� = −
1

i�r� sin �
	
lm

implmjl�kR�Yl
m��,�� , �26�

where we have used the recurrence relations for the deriva-
tives of jl and Yl

m �21�. Since P� and P� are finite �0 at the
inner lining�, they are everywhere determinate. We can ig-
nore them in the further derivation, as their behavior is trivi-
ally coupled to p. At kR=0,

Pr = −
k

3i�
	
m

p1mY1
m��,��

−
k

i�
	

l�1,m
plm

�ljl−1�0� − �l + 1�jl+1�0��
�2l + 1�

Yl
m��,��

�27�

and jl	1�0�=0 for l�1. So only the l=1 components
�m=−1,0 ,1� are nonzero. To determine if a nonzero signal is
transmitted inside the cloak as a result of the l=1 compo-
nents, it is necessary to fit boundary conditions. The bound-
ary conditions for this system of differential equations are
�22,23�

��a�
−1 P� �a� = ��b�

−1 P� �b�, �28�

��a��� · ���a�
−1 P� �a�� = ��b��� · ���b�

−1 P� �b�� , �29�

p�a� = p�b�, �30�

��a�
−1�� p�a� = ��b�

−1�� p�b�. �31�

As expected, Eq. �28� implies that only nonzero momenta
are transmitted through any barrier. But Eq. �21� at r�→a
implies that ��a�

−1 →0, so even a nonzero field will not produce
a measurable signal within the cloak. The momentum is
therefore discontinuous at the inner lining of the cloak. To
see this more directly, recall that vr=�rr

−1Pr, so Eq. �28� refers
to the velocity:

vr = −
b

b − a

R2

r�2

k

i��0
	
lm

plm

�
�ljl−1�kR� − �l + 1�jl+1�kR��

2l + 1
Yl

m��,�� �32�

the R2→0 term will ensure that the velocity vanishes every-
where �no indeterminacy�. So for both momentum and ve-
locity, perfect cloaking is preserved. This can be easily un-
derstood by realizing that the density at the inner lining is
infinite, and so no finite amount of pressure will cause it to
move �possess a nonzero velocity�. The infinite density layer
ensures that momentum is conserved on each side. So if
observers inside of the cloak wished to reconstruct incoming
waves �i.e., hear�, they would have to be able to detect fields
right at this discontinuity �or able to detect fields infinitesi-
mally outside the inner lining, which will likely be the case
for real implementations with finite thicknesses and nonsin-
gular materials�. And even then, they could only hear a few
components.

There is no �−1 in Eq. �30�, however, so this argument
cannot be used to rule out the transmission of a nonzero
pressure wave by the cloak. Considering Eq. �25� when kR
=0,

p =
1

�4

p00. �33�

So in a perfect cloak, it is possible to partially reconstruct
signals sent in from the outside while still having the pres-
ence of the cloak be completely undetected.

This would appear to contradict Ruan et al. �24�, Chen et
al. �25�, and Cummer et al. �17� who all found the field
inside of a cloak to be strictly 0. A more careful reading
shows that there is no such contradiction. Ruan et al. dealt
with a cylindrical system. While this system is analogous to
the spherical one considered here, there are differences. In
particular, there were singularities in both the radial and an-
gular � matrix elements �� here�. Their argument relied spe-
cifically on the divergence of �� at the inner lining.

Chen et al. did specialize to the same material parameters
in a spherical geometry �which is no surprise, as we explic-
itly use their construction of the cloak�. But because they
focused upon electrostatics they only dealt with the potential
�by analogy p�. So the behavior of P� is left unconstrained
there. Furthermore, when considering the scattering solution
to the field in each region, they neglected the j0 term, which
is the precisely the only nontrivial term. A justification for
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neglecting this term may be found in Qiu et al. �26�. They
considered a spherical geometry and electromagnetism, so
their E� and H� fields contained a j0 term. However, they pre-
ferred to solve everything using potentials, where the sum-
mation begins with j1. So, in both these papers, it is the
preference to focus upon the potential that inspires their ex-
clusion of j0. Since the equations governing p are exactly
analogous to those of the potential �16�, we expect that p00
=0 in most cases.

Cummer et al. did include the j0 term and presented two
arguments for why it does not contribute to the interior field.
Their first argument is to claim an analogy with Ruan et al.,
which does not account for the differences between the two
cloaks. Their second argument is that the spherical Hankel
function h0 should be included in Eq. �27� to maintain a
strictly 0 field inside the cloak. This argument sounds rea-
sonable, but introduces complications. This term must be in-
troduced in a way to maintain Alhl�0 outside the cloak,
where An is the weighting coefficient. Otherwise, there will
be noticeable scattering and the invisibility will be lost. Fur-
thermore, when we find Pr, this will introduce an h1 term.
This must also be properly behaved at both linings of the
cloak to keep from breaking the invisibility or introducing
internal fields. Their simulations indicated that all of these
scruples are apparently accounted for in practice.

For any attempt at a reconstruction of the incoming wave,
the ability to detect the nonzero momentum at the lining
would be more important than the ability to detect the pres-
sure wave. First of all, the l=0 component of the wave cor-

responds to a completely uniform pressure over the entire
surface of the sphere—and therefore would be indistinguish-
able from a change in gauge pressure. The maximum detect-
able components of the momentum wave �i.e., just the l=1
terms�, on the other hand, have the same angular dependence
as a dipole moment in electromagnetism or a p-orbital in
Hydrogen. It therefore would give a distinct signal that could
not be mistaken for an overall shift in the gauge. Moreover,
there are three different polarizations possible—
corresponding to m=−1,0 ,1. This means that a compara-
tively richer amount of information could be sent to a
cloaked observer by relying upon momentum instead of
pressure—which only has one component.

In conclusion, we have examined the linearized acoustic
wave equations and found a second field subject to the trans-
formation media interpretation. In considering the behavior
of the momentum in an acoustic wave, we have derived a
field fundamentally different from other instances of the
transformation media interpretation—its governing equation
is distinct from the wave equation. The behavior of the mo-
mentum and pressure fields is then examined in the case of
cloaking devices, where we find that perfect cloaking is pre-
served for both fields.
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